南宁市比赛 南宁数学竞赛_十二星座_星座运势

星座运势>星座运势>十二星座

南宁市比赛 南宁数学竞赛

时间:2023-10-16 15:44:55 作者:巴音额日乐

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于南宁市比赛 南宁数学竞赛的文章,本文对文章南宁市比赛 南宁数学竞赛好好的分析和解答,希望你能喜欢,只有你喜欢的内容存在,只有你来光临,我们才能继续前行。

南宁市比赛 南宁数学竞赛

六年级30个回答的数学应用题

1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。两人原来各有多少钱?书多少钱?

设丽丽有x元钱 家家有y元钱 得出:

3/5x=2/3y

2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)

解2元一次方程得x=50 y=45 即丽丽50元 家家45元 书30元一本

2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行基毕团1千米路程要耗油多少千克?

8除4/5=10(km/)

4/5除8=0.1(kg)

3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?

30÷1/2=60千米 1÷60=1/60小时

4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?

原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23

求出x=28

5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?

62-24=38(只)

3/5红=2/3黄

9红=10黄 红:黄=10:9

38/(10+9)=2

红:2*10=20

黄:20*9=18

6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?

原有女生:36×4/9=16(人)

原有男生:36-16=20(人)

后有总人数:20÷(1-3/5)=50(人)

后有女生:50×3/5=30(人)

来女生人数:30-16=14(人)

7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?

2.16/(1+1/11)=1.98(立方米)

8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多搏橘少吨?,乙的粮食有多少吨?

现在甲乙各有

560÷2=280吨

原来甲有

280÷(1-2/9)=360吨

原来乙有

560-360=200吨

9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?

原价是

200÷2/11=2200元

现价是

2200-200=2000元

10。一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?

全程的

1-2/5=3/5

20+70=90千米

甲乙两地相距

90÷3/5=150千米

11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?

第一天看的占全书的

3/8-1/5=7/40

这本书共有

28÷7/40=160页

12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?

假设这批零件共有X个

1/28X=84-63

1/28X=19

X=532

所以这批零件共有532个。

13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?

15÷(7/10-1/2)=75(千克)

14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?

(106*5)/(1-(3/5))

=530/0.4

=1325(km)

15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?

男女生人数比是:4/5:3/2=8:15

男生人数:46/(8+15)*8=16人

女生人数46-16=30人

16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?

(1-1/3)/(1/5)=10/3

还要3 1/3个小时抄完

17.两列火车同时从相距600千米的两城相对开数消出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?

600/(60+75)=40/9(小时)

经过40/9小时两车可以相遇。

18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?

64×3/4=48千米

19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?

第一天卖出水果总重量的3/5,则,第二天卖了2/5,

3/5-2/5=1/5,第一天比第二天多的,

30÷1/5=150千克,

算式是,

1-3/5=2/5

3/5-2/5=1/5

30÷1/5=150千克

20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?

910*4/7=(910*4)/7=520......女生

910-520=390.......男生

21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?

4/5*5/8=(4*5)/(5*8)=1/2(米)

4/5-1/2=8/10-5/10=3/10(米)

22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?

9÷3×7=21条

23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?

132÷(6+5)=12人

男同学有

12×6=72人

女同学有

12×5=60人

24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.

甲:乙=2:3=8:12

乙:丙=4:5=12:15

甲:乙:丙=8:12:15

甲:丙=8:15

25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.

1.2:1=6:5

26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机太,其中彩色电视机有多少台?

×20分之9=台

27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.

干部占全厂职工总数的

1-3分之2-9分之2=9分之1

这个厂的工人,技术人员和干部人数的比是

3分之2:9分之2:9分之1=6:2:1

28.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.

这个班的男生和女生各有多少人..

因为人数为整数,

所以班级人数能被5+6=11整除

所以班级人数为44人

男生有

44÷(5+6)×5=20人

女生有

44-20=24人

29.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?

文艺书原有:300÷(7/12-5/9)=10800(本)

文艺书比原来增加了:300÷10800≈2.8%

30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?

原来里面水是90,糖是10

倒出10克,那里面还剩90,其中水81,糖9

再加满水又水为91,糖还是9

那就是9/91

31.五、六年级只有学生175人。分成三组参加活动。一、二两组的人数比是5:4,第三组有67人,第一、二两组各有多少人?

(1)一、二组共有学生175人-67人=108人

(2)一组学生有108人×5/9=60人

(3)二组学生有108人×4/9=48人

32.某校有学生465人,其中女生的2/3比男生的4/5少20人。男·女各个多少?

女生的3分之2比男生的5分之4少20人

女生比男生的(4/5)/(2/3)=6/5少20/(2/3)=30人

男生有

(465+30)/(1+6/5)=225(人)

女生有

465-225=240(人)

33.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?

9除以(5分之2-7分之1)

=9除以35分之9

=35(页)

答:这见稿件有35页。

34.一块地,长和宽的比是8:5,长比宽多24米。这块地有多少平方米?

设长是8份,则宽是5份,多了:3份,即是24米

那么一份是:24/3=8米

即长是:8*8=64米,宽是:8*5=40米

面积是:64*40=2560平方米

35.如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?

女同学为单位1

男同学为1+25%=125%

女同学的人数比男同学少(125%-1)÷125%=20%

36.饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?

去年养猪:(1987+245)/3=744

今年比去年多养猪:1987-744=1243

37.小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?

设小伟捐了X元

所以 2:5=X:35 得:X=14元 小伟捐了14元

38.三个平均数为8.4,其中第一个数是9.2,第二个数比第三个数少0.8,第三个数是什么

第3个数是8.4

解:设第3个数为x,列方程为:

3*[9.2+(x-0.8)+x]=8.4

解得 x=8.4

39.有两根绳子,第一根绳子的长度是第二根的1.5倍,第二根比第一根短3米,两根绳子各长多少米?

设第二根长x米,则第二根长1.5x米

1.5x-x=3

0.5x=3

x=6

6×1.5=9(米)

第一根长6米

第二根长9米

40.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的中点,这条路全长多少米?

4+5=9

解:设这条路全长x米:

(5/9-4/9)x=25

1/9x=25

x=225

这条路全长225米

41.某工厂6月份计划用煤54吨,前半月平均每天烧煤1.6吨,剩下的煤如果每天烧1.5吨,还可以烧多少天?

42.“三跳”活动中,参加跳绳的人数是踢毽人数的3倍,已知跳绳人数比踢键子人数多18人,跳绳和踢毽子的同学各有多少人?

43.商店有一批运动衣,第一天卖出35件,第二天卖出28件,第二天比第一天少收入168元,每件运动衣售价多少元?

44.缝纫组里有布27.8米,计划先做8套成人衣服,每套用布2.6米,剩下的布再做成儿童服装,按每套用布1.4米计算,能做成儿童服装多少套?

45.小明看一本450页的书,前3天每天看30页,余下的每天看40 页,看完这本书还需多少天?

46.一辆汽车从甲地开往乙地,前2小时共行120千米,后3小时共行210千米,平均每小时行多少千米?

47.一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?

48.同学们为灾区捐献衣服,第一次捐了890件,第二次捐了950件,两次一共捐了多少件?

49.学校举行跳绳比赛,四年级组跳了800个,五年级组跳了950个,五年级组比四年级组多跳了多少个?

50.学校举行跳绳比赛,四年级组跳了800个,五年级组比四年级组多跳了150,五年级组跳了多少个?

51.飞机每小时飞行360千米,7小时一共飞行多少千米?

52.幼儿园买来苹果36千克,梨12千克,苹果的重量是梨的重量的几倍?

53

.幼儿园买来梨12千克,苹果的重量是梨的3倍,苹果有多少千克?

54.幼儿园买来苹果36千克,苹果的重量是梨的3倍,梨有多少千克?

55. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

56. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

57. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

58. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

59. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

60. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

61. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

62. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

63. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

64. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

小学数学应用题综合训练(02)

65. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

66. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的0%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.

67. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?

68. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

69. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

70. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

71. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?

72. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?

73. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?

74. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

75. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

76. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

77. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?

78. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

79. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

80. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

81. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

82. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

83. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

84. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

小学数学应用题综合训练(04)

85. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

86. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

87. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?

88. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?

89. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?

90. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

91. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?

92. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

93. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?

94. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

小学数学应用题综合训练(05)

95. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?

96. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

98. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?

99. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?

100. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?

六年级毕业考应用题的所有类型(附答案)只要应用题哦?

09小升初数学例题详解(一)

例1 两辆汽车同时从甲、乙两地相对开出,5小时后相遇。一辆汽车的速度是每小时55千米,另一辆汽车的速度是每小时45千米,甲、乙两地相距多少千米?

【分析 1】先求两辆汽车各行了多少千米,再求两辆汽车行驶路程的和,即得甲、乙两地相距多少千米。

【解伍搜法1】一辆汽车行驶了多少千米?

55×5=275(千米)

另一辆汽车行驶了多少千米?

45×5=225(千米)

甲、乙两地相距多少千米?

275+225=500(千米)

综合算式: 55×5+45×5

=275+225=500(千米)

【分析2】先求出两辆汽车每小时共行驶多少千米,再乘以相遇时间,即得甲、乙两地相距多少千米。

【解法2】两车每小时共行驶多少千米?

55+45=100(千米)

甲、乙两地相距多少千米?

100×5=500(千米)

综合算式: (55+45)×5

=100×5=500(千米)。

【分析 3】甲、乙两地的距离除以相遇时间,就等于两辆汽车的速度和。由此可列出方程,求甲、乙两地相距多少千米。

【解法3】设甲乙两地相距x千米。

x÷5=55+45

x=100×5

x=500

【分析4】甲乙两地距离减去一辆汽车行驶的路程,就等于另一辆汽车行驶的路程,由此列方程解答。

【解法4】设甲乙两地相距x千米。

x-55×5=45×5

x-275=225

x=275+225

x=500

答:甲、乙两地相距500千米。

【评注】解法2和解法1是算术解法,其中解法2是较好的解法。解法3和解法4是方程解法,其中解法3是较好的解法。比较以上四种解法,解法1和解法2可缺孝以运用乘法分配律相互转换,解法1和解法4、解法2和解法3,它们的数量关系是分别相同的,比较一下就会发现它们只是解题思路及方法不同。

例2 两辆汽车从相距345千米的两地同时相向开出,一辆汽车每小时行60千米,另一辆汽车每小时行55千米。经过几小时两辆汽车可以相遇?

(辽宁省沈阳市)

【分析 1】先求出两辆汽车每小时共行多少千米,即速度和。然后根据公式“两地距离÷速度和=相遇时间”即可求得。

【解法1】 345÷(60+55)

=345÷115=3(小时)。

【分析 2】两辆汽车在相遇时各行路程的和,就等于两地之间的距离345千米。由此可列方程解。

【解法 2】设经过x小时两车相遇。

60x+55x=345

115x=345

x=345÷115

x=3

【分析 3】根据“速度和×相遇时间=两地距离”这一等量关系,列方程解。

【解法3】设经过x小时两车相遇。

(60+55)×x=345

x=345÷(60+55)

x=345÷115

x=3

【分析4】两地之间的距离减去一辆汽车所行的路程,就等于另一辆汽车所行的路程。由此列方程解。

【解法4】设经过x小时两车相遇。

345-60x=55x

60x+55x=345

115x=345

x=3

答:经过3小时两辆汽车可以相遇。

【评注】解法1思路清晰,运算简便,是本题的较好解法。后三种解法都是方程解法,实际上这三种方程解法都是同一数量关系,比较一下就会发现它们都是由一个方程变形得来的,其中解法3较为简捷。

例3 快车和慢车同时伏橘稿从相距385千米的两个城市相对开出,经过5小时后两车相遇。慢车每小时行35千米,求快车每小时行多少千米?

(黑龙江省哈尔滨市南岗区)

【分析1】先求出慢车共行了多少千米,再用两城市间的距离减去慢车行的路程,就等于快车共行了多少千米,由此可求快车每小时行多少千米。

【解法1】慢车共行了多少千米?

35×5=175(千米)

快车共行了多少千米?

385-175=210(千米)

快车每小时行多少千米?

210÷5=42(千米)

综合算式: (385-35×5)÷5

=(385-175)÷5=210÷5

=42(千米)。

【分析2】用两城市间距离除以两车的相遇时间,即得两车速度和,再用速度和减去慢车的速度,即得快车速度。

【解法 2】两车每小时共行多少千米?

385÷5=77(千米)

快车每小时行多少千米?

77-35=42(千米)

综合算式:385÷5-35=77-35=42(千米)。

【分析3】根据“速度和×相遇时间=两地距离”这一等量关系,列方程解。

【解法3】设快车每小时行x千米。

(35+x)×5=385

35+x=385÷5

x=385÷5-35

x=42

【分析4】根据“慢车行驶路程+快车行驶路程=两地距离”列方程解。

【解法 4】设快车每小时行x千米。

35×5+5x=385

5x=385-35×5

5x=210

x=42

【分析5】假设快车的速度与慢车的速度相同,那么两城市之间的距离就是35×2×5=350(千米)。这样比实际距离少385-350=35(千米),再把35千米平均分成5份,每份与慢车速度的和,就是快车的速度。

【解法 5】(385-35×2×5)÷5+35

=(385-350)÷5+35

=35÷5+35=7+35=42(千米)

答:快车每小时行42千米。

【评注】比较以上五种解法,解法2的思路简明,运算简便,也比较容易想到,是本题的最佳解法。

例4 一条公路上依次有甲、乙、丙、丁四个车站。小明和小华两人同时从甲、丁两站相向而行,当小明用40分钟走到乙站时,小华刚好走到丙站,问两人再走几分钟后相遇?乙到丙站是1520米,甲到丁是5320米.(上海市普陀区)

【分析1】先求出小明和小华40分钟共行多少米,再除以40即得两人的速度和。再用1 520米除以速度和就等于两人再走的相遇时间。

【解法 1】两人40分钟共行了多少米?

5 320-1520=3 800(米)

两人的速度和是多少?

3 800÷40=95(米)

两人再走几分钟相遇?

1520÷95=16(分钟)

综合算式: 1520÷[(5 320-1520)÷40]

=1520÷[3 800÷40]

=1520÷95=16(分钟)。

【分析2】先求出两人的速度和,再求出两人从开始行到相遇共用多少分钟,再减去共行的40分钟,即得再走的相遇时间。

【解法 2】两人的速度和是多少?

(5 320-1520)÷40=95(米)

两人走全程共需多少分钟?

5320÷95=56(分钟)

再走几分钟两人相遇?

56-40=16(分钟)

综合算式: 5320÷[(5320-1520)÷40]-40

=5320÷[3800÷40]-40

=5320÷95-40=56-40=16(分钟).

【分析3】先求出已走的路程是再走路程的几倍,再用40分钟除以这个倍数,即得两人再走所需的时间.

【解法3】两人已走了多少米?

5320-1520=3800(米)

已走路程是再走路程的几倍?

3800÷1520=2.5(倍)

再走几分钟两人相遇?

40÷2.5=16(分钟)

综合算式: 40÷[(5320-1520)÷1520]

=40÷[3800÷1520]

=40÷2.5=16(分钟).

【分析4】因为两地距离÷相遇时间=速度和,而两人速度和不变,所以两地距离和相遇时间成正比例.

【解法4】设再走x分钟两人相遇.

(5320-1520)∶40=1520∶x

3800∶40=1520∶x

x=16

答:两人再走16分钟后相遇.

【评注】解法1是一般解法,易于理解和掌握,但计算较繁些.解法3的思路简明,运算也不繁,是本题的较好解法.同时,由解法3的思路还可推想出运用分数应用题的解法,或运用比的知识解题,读者可试试.

09小升初数学例题详解(二)

例 甲乙两车分别从两城相对开出,甲车每小时行33千米,乙车每小时行28千米.甲车开出2小时后,乙车出发,经3小时相遇.两城相距多少千米?

【分析1】甲车先开2小时所行的路程,加上两车同时开3小时所行的路程,所得的和就是两城相距多少千米.

【解法1】甲车2小时行了多少千米?

33×2=66(千米)

甲乙两车同时开3小时共行多少千米?

(33+28)×3=61×3=183(千米)

两城相距多少千米?

66+183=249(千米)

综合算式: 33×2+(33+28)×3

=33×2+61×3

=66+183=249(千米).

【分析2】甲车所行的路程加上乙车所行的路程,即得两城相距多少千米.

【解法2】甲车共行了几小时?

2+3=5(小时)

甲车共行了多少千米?

33×5=165(千米)

乙车行了多少千米?

28×3=84(千米)

两城相距多少千米?

165+84=249(千米)

综合算式: 33×(2+3)+28×3

=33×5+28×3=165+84=249(千米).

【分析3】假设甲车开车时乙车也同时出发,即两车同时行5小时相遇.这样两车共行的路程比两城的实际距离多算了2个28千米.由此可求出两城间的实际距离。

【解法3】假设两车同时发车,共行了几小时相遇?

2+3=5(小时)

两车同时行5小时共行多少千米?

(33+28)×5=305(千米)

乙车比实际多计算了多少千米?

28×2=56(千米)

两城相距多少千米?

305-56=249(千米)

综合算式: (33+28)×(2+3)-28×2

=61×5-28×2

=305-56=249(千米)

【分析4】甲车先开出2小时,可假设为比实际晚开出1小时;而乙车假设为比实际早开出1小时.这样原题就假设为:甲乙两车同时相向而行,经过4小时相遇.但两车所行路程的和比两城实际距离少33-28=5(千米).

【解法4】 (33+28)×(3+2÷2)+(33-28)

=61×4+5=244+5=249(千米)

答:两城相距249千米.

【评注】解法1和解法2是一般方法,容易想到,易于理解和掌握.解法3和解法4是假设法,思路新颖,算式看起来麻烦,但运算并不麻烦.

09小升初数学例题详解(三)

例 A、B两站间的铁路长490千米,甲乙两列火车同时从这两站相对开出,甲车每小时行72千米,乙车每小时行68千米。相遇时,甲、乙两列火车各行了多少千米?

(广东省深圳市)

【分析1】根据“两地距离÷速度和=相遇时间”求出两车的相遇时间,再用两车的速度分别乘以相遇时间,即可分别求出两车各行了多少千米.

【解法1】两车经过几小时相遇?

490÷(72+68)=490÷140=3.5(小时)

甲上行了多少千米?

72×3.5=252(千米)

乙车行了多少千米?

68×3.5=238(千米)

综合算式:甲车: 72×[490÷(72+68)]

=72×[490÷140]

=72×3.5=252(千米)

乙车:490-252=238(千米).

【分析2】根据两列火车所行驶的时间相等,列方程解.

【解法2】设甲车行了x千米,则乙车行驶的路程为490-x.

140x=72×490

x=

x=252

乙车行程为:490-252=238(千米).

【分析3】因为“路程÷速度=时间”,时间一定,所以路程和时间成正比例,即甲乙两车的速度比恰是甲乙两车所行路程的比.由此可先求甲乙两车速度比,再按比例分配的方法分别求出甲乙两车各行的路程.

【解法3】甲乙两车所行路程的比?

72∶68=18∶17

甲车行了多少千米?

490×=490×=252(千米)

乙车行了多少千米?

490×=490×=238(千米)

综合算式:甲车:490×=252(千米)

乙车:490×=238(千米).

答:相遇时,甲车行252千米,乙车行238千米.

【评注】解法1是通常解法,易于理解和掌握.解法3是按比例分配解法,思路巧妙,运算简便,是本题的最佳解法.

09小升初数学例题详解(四)

例 甲、乙两列火车同时从相距630千米的两地相对行驶,6小时相遇.甲车每小时比乙车快5千米,问两车的速度各是多少?

【分析1】先求甲乙两车的速度和,再用速度和加上5千米,就等于甲车2小时的行程,再除以2,即得甲车速度.用甲车速度减去5千米,即得乙车速度.

【解法1】甲乙两车的速度和是多少?

630÷6=105(千米)

甲车速度是多少?

(105+5)÷2=110÷2=55(千米)

乙车速度是多少?

55-5=50(千米)

综合算式:甲车: (630÷6+5)÷2

=(105+5)÷2=110÷2=55(千米)

乙车:55-5=50(千米).

【分析2】假设乙车速度与甲车速度相同,那么相遇时,甲乙两车所行的路程和比两地实际距离多计算了5×6=30(千米).再用630千米加上30千米的和除以6小时,即得甲车2小时的行程.由此可先求甲车速度;再求乙车速度.

【解法2】假设乙车与甲车速度相同,共多计算多少千米?

5×6=30(千米)

甲车2小时行多少千米?

(630+30)÷6=660÷6=110(千米)

甲车每小时行多少千米?

110÷2=55(千米)

乙车每小时行多少千米?

55-5=50(千米)

综合算式:甲车:(630+5×6)÷6÷2

=660÷6÷2=55(千米)

乙车:55-5=50(千米).

【分析3】假设甲车速度与乙车速度相同,那么两车所行路程的和比两地的实际距离要少5×6=30(千米).用630千米与30千米的差除以6小时,即得乙车2小时的行程.由此可先求乙车速度,再求甲车的速度.

【解法3】假设甲车与乙车速度相同,共少计算多少千米?

5×6=30(千米)

乙车2小时行多少千米?

(630-30)÷6=600÷6=100(千米)

乙车每小时行多少千米?

100÷2=50(千米)

甲车每小时行多少千米?

50+5=55(千米)

综合算式:乙车:(630-5×6)÷6÷2

=600÷6÷2=50(千米)

甲车:50+5=55(千米).

【分析4】根据“速度和×相遇时间=两地距离”可列方程解.

【解法4】设乙车每小时行x千米,那么甲车每小时行(x+5)千米.

(x+5+x)×6=630

2x+5=630÷6

2x=630÷6-5

x=(630÷6-5)÷2

x=50

x+5=50+5=55

答:甲车每小时行55千米,乙车每小时行50千米.

【评注】解法1是通常解法,易于理解和掌握.解法2和解法3是假设法,易于理解,运算简便,是较好的解法.解法4的方程解法还可设甲车速度为x,读者可试试.

09小升初数学例题详解(五)

例 客车和货车同时从甲、乙两城之间的中点向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的3/4,甲、乙两城相距多少千米?

【分析1】由题意可知,3小时内货车比客车少行30千米,由此可求出两车的速度差,再除以对应分率(1-3/4),就可求出客车的速度,再求出乙车速度,最后根据"速度和×相遇时间=两地距离"求出甲、乙两城相距多少千米.

【解法1】货车每小时比客车少行多少?

30÷3=10(千米)

客车每小时行多少千米?

10÷(1-3/4)=40(千米)

货车每小时行多少千米?

40-10=30(千米)

甲、乙两城相距多少千米?

(40+30)×3+30=240(千米)

综合算式: 30÷3÷(1-3/4)×(1+3/4)×3+30

=30÷3÷1/4×7/4×3+30

=40×7/4×3+30=240(千米).

【分析2】因为"路程÷速度=时间",而时间一定,所以两车行驶的路程和两车的速度成正比例,即货车和客车的速度比就是它们所行路程的比。把转化为3∶4,即货车和客车的路程比.又知两车所行路程的差是30千米,由此可求出两城相距多少千米?

【解法2】 30÷(4-3)×(3+4)+30

=30÷1×7+30=240(千米).

【分析3】根据"客车所行路程减去货车所行路程等于30千米"这一等量关系列方程,先求出两车的速度,再用速度和乘以相遇时间加上30千米,即得甲乙两城相距多少千米.

【解法3】设客车每小时行x千米.

3x-3(3/4)x=30

x=40

3x=30

x=10

两城距离:(40+30)×3+30=240=240(千米).

答:甲乙两城相距240千米.

【评注】解法1是基本解法,易于理解,但计算较繁.解法3和解法1的数量关系及思路是基本相同的.解法2的思路简捷,运算也简便,是本题的最佳解法.

09小升初数学例题详解(六)

例1 快车从甲城开往乙城,需要6小时.慢车从乙城开往甲城,每小时行42.5千米.两车同时开出2小时还相距132千米,快车每小时行多少千米?

【分析1】快车行全程需6小时,它已行了2小时,再剩下的路程,快车再行4小时就行完全程.也就是说,慢车2小时行驶的路程与132千米的和,快车用4小时即可行完.由此可求出快车每小时行多少千米.

【解法1】慢车2小时行了多少千米?

42.5×2=85(千米)

快车4小时可行驶多少千米?

85+132=217(千米)

快车每小时行多少千米?

217÷(6-2)=54.25(千米)

综合算式: (42.5×2+132)÷(6-2)

=(85+132)÷4

=217÷4=54.25(千米).

【分析2】因为快车行全程需要6小时,已行了2小时,而快车没行的路程是已行路程的(6-2)÷2=2(倍),由此可求出快车2小时行多少千米,再求每小时行多少千米.

【解法2】快车没行的路程有多少千米?

42.5×2+132=85+132=217(千米)

快车没行的路程是已行路程的几倍?

(6-2)÷2=2(倍)

快车已行了多少千米?

217÷2=108.5(千米)

快车每小时行多少千米?

108.5÷2=54.25(千米)

综合算式: (42.5×2+132)÷[(6-2)÷2]÷2

=(85+132)÷[4÷]÷2

=217÷2÷2=54.25(千米).

【分析3】因为快车每小时行全程的,2小时就行全程的.快车没行的路程是全程的1-=,用快车没行的路程除以,即得全程有多少千米,再除以6小时,即得快车速度.

【解法3】快车还没行的路程有多少?

42.5×2+132=85+132=217(千米)

甲乙两城相距多少千米?

217÷(1-)=217÷=325.5(千米)

快车每小时行多少千米?

325.5÷6=54.25(千米)

综合算式: (42.5×2+132)÷(1-)÷6

=(85+132)÷÷6

=217××=54.25(千米).

【分析4】根据“两城距离减去快车已行路程等于快车没行的路程”这一等量关系列方程解.

【解法4】设快车每小时行x千米.

6x-2x=42.5×2+132

4x=217

x=54.25

答:快车每小时行54.25千米.

【评注】解法3是一般解法,计算较繁.解法4的等量确定恰当,运算也较简便.解法1的思路更简捷,更巧妙,运算也更为简便,是本题的最佳解法.

例2一辆小汽车和一辆货车同时从相距432千米的两地相对开出,小时相遇.已知小汽车和货车速度的比是9∶7,小汽车和货车每小时各行多少千米?

(广西壮族自治区南宁市)

【分析1】先用两地距离除以相遇时间,即得小汽车和货车的速度和,再运用按比例分配的方法,把速度和按9∶7进行分配,即可求出小汽车和货车每小时各行多少千米.

【解法1】两车的速度和是多少?

432÷=96(千米)

货车每小时行多少千米?

96×=42(千米)

小汽车每小时行多少千米?

96×=54(千米)

综合算式:小汽车: 432÷×

=432××(千米)

货车: 432÷

=432×=42(千米)

或:54÷9×7=42(千米)

【分析2】因为“路程÷速度=时间”,而时间一定,所以两车所行的路程和它们各自的速度成正比例.因此,两车的速度比等于两车所行的路程比.由此可把432千米按9∶7进行分配,即可求出两车的速度各是多少.

【解法2】小汽车共行了多少千米?

432÷(9+7)×9=432÷16×9=243(千米)

小汽车每小时行多少千米?

243÷=54(千米)

货车共行了多少千米?

432÷(9+7)×7=189(千米)

货车每小时行多少千米?

189÷=42(千米)

综合算式:小汽车: 432×÷

=432×=54(千米)

货车:54÷9×7=42(千米).

【分析3】把9∶7转化为,即货车的速度是小汽车的,设小汽车的速度为x,那么货车的速度为x.根据“速度和×相遇时间=两地距离”这一等量关系,列方程求出两车的速度各是多少.

【解法3】设汽车每小时行x千米.

(x+x)×=432

x+x=432÷

(1+)x=432×

x=96÷(1+)

x=54

货车:54×=42(千米).

答:小汽车每小时行54千米;货车每小时行42千米.

【评注】本题是行程和比的知识综合运用的应用题.解此类题的关键是注意对已知条件的转化理解.如解法3是把比转化为分数来理解,使解题思路进行了转换.同时,还要注意对知识的综合运用,如解法1运用了行程应用题和按比例分配的知识,解法2运用了正比例的意义和按比例分配的知识.比较以上三种解法,解法1是本题最佳解法.

2023年南宁市有小学体育录像课比赛吗

2023年南宁市有小学体育录像课比赛。

1.突显教与学方式转变的课堂教学。

2.以一节完整的课堂教学为参赛内容,力求原生态、真实反映课堂教学的实际情况。

3.参赛作品一律以光盘形式上交,并以“学校名称+学科+姓名+课题名称”的形式命名。

4.本次竞赛活动分为校级竞赛和区级竞赛两个层面。

校级竞赛:以学校为单位,广泛开展优质课评比活动。

区级竞赛: 各学校在校级初步选拔的基础上,拍摄课堂教学录像,分学科报送作品。

5.中学语文、数学、英语学科每握郑迅学校每年级各选送1节,其它学科每学校各选送1-2节(科学、历史与社会按分科课程申报)。 小学语文、数学、英语学科每学校低年段、高年段段此各选送1节,其它学科每学校各选送1-2节。

以课例为单位填写“福田区录像课丛樱比赛呈送表”(见附件1),以学校为单位填写“福田区录像课比赛学校汇总表”(见附件2)。中学作品统一送交教研中心丁求实老师,小学作品统一交教研中心刘晓老师

6.参赛者同意福田区教研中心具有获奖作品的交流和使用权。

以上内容是小编精心整理的关于南宁市比赛 南宁数学竞赛的精彩内容,好的文章需要你的分享,喜欢南宁市比赛 南宁数学竞赛这篇精彩文章的,请您经常光顾吧!

上一篇:23赛季巅峰赛排名 23巅峰赛

下一篇:更多十二星座

本文标题:南宁市比赛 南宁数学竞赛

本文链接:http://m.xingzuo789.com/article/66287.html

使劲推荐

南宁市比赛 南宁数学竞赛
南宁市比赛 南宁数学竞赛

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于南宁市比赛 南宁数学竞赛的文...

23赛季巅峰赛排名 23巅峰赛
23赛季巅峰赛排名 23巅峰赛

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于23赛季巅峰赛排名 23巅峰赛的...

2023年vr新品 2023年vr大会
2023年vr新品 2023年vr大会

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2023年vr新品 2023年vr大会的...

桃姐2023 桃姐2023年歌曲有吗
桃姐2023 桃姐2023年歌曲有吗

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于桃姐2023 桃姐2023年歌曲有吗...

2023音乐综艺 2023音乐综艺最新
2023音乐综艺 2023音乐综艺最新

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2023音乐综艺 2023音乐综艺最...

发表评论

相关推荐

2023号电池价格 2023号电池图片
2023号电池价格 2023号电池图片

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2023号电池价格 2023号电池图...

2023度假旅游 2023年度假
2023度假旅游 2023年度假

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2023度假旅游 2023年度假的文...

2023短平快项目 2023短平快落地实体项目
2023短平快项目 2023短平快落地实体项目

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2023短平快项目 2023短平快落...

南航投档线2023山东 南航投档线2023河南省
南航投档线2023山东 南航投档线2023河南省

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于南航投档线2023山东 南航投档...

红色短袖图片 红色短袖怎么搭配下装
红色短袖图片 红色短袖怎么搭配下装

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于红色短袖图片 红色短袖怎么搭...

精选十二星座标签